

Código: 02-21

PRODUÇÃO DE QUEROSENE DE AVIAÇÃO A PARTIR DO CRAQUEAMENTO DE RESÍDUOS PLÁSTICOS COM CATALISADOR A BASE DE REJEITO DE MINERAÇÃO DE FERRO DE BRUMADINHO (MG) E HIDROGENAÇÃO COM CATALISADOR A BASE DE NIÓBIO

Maríthiza Gonçalves Vieira¹, <u>Lucas Ferrão Marinho</u>¹, Guilherme Botelho Meireles de Souza¹, Christian Goncalves Alonso², Rafael Pavão das Chagas², Vinicius Kalil Tomazett¹, Nelson Roberto Antoniosi Filho²

¹Discente do curso de Química da Universidade Federal de Goiás, Goiânia – GO. E-mail: <u>lucas</u> ²Docente do curso de Química da Universidade Federal de Goiás, Goiânia – GO

\sum

INTRODUÇÃO

toneladas métricas (2019)

35 % Embalagens ECONOMIA

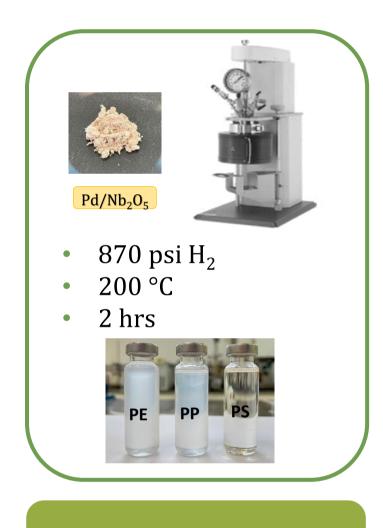
310 milhões de toneladas de em **2016**

Um dos principais
poluentes do ambiente
aquático e terrestre
Detectado a presença de
microplástico no sangue
humano

Em 2050 estima-se que existam mais plásticos que peixes nos oceanos

OBJETIVOS

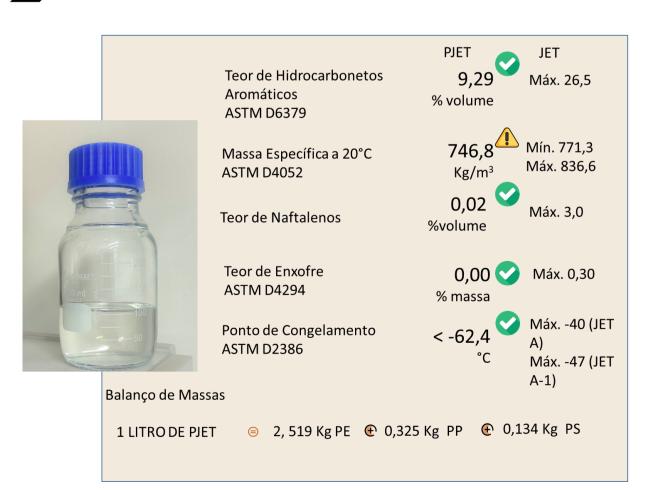
Resíduos


O objetivo desse estudo é propor uma rota de conversão de resíduos plásticos em combustível de aviação que apresente composição química e propriedades semelhantes ao Jet A-1.

\rightarrow

METODOLOGIA

CRAQUEAMENTO CATALÍTICO


HIDROGENAÇÃO

DESTILAÇÃO E ANÁLISES

RESULTADOS E DISCUSSÃO

CONCLUSÃO

O PJET FUEL se destacou durante a avaliação do ponto de congelamento, que é uma das características fundamentais para a avaliação da performance dos Jet Fuels. Enquanto a especificação ASTM para Jet Fuels comerciais estabelece um limite de -40 °C para Jet-A e -47°C para Jet-A1, o PJET FUEL apresentou ponto de congelamento inferior a -62,4°C.

REFERÊNCIAS BIBLIOGRÁFICAS

DE SOUZA, G. B. M. et al. Nb2O5 supported catalysts for cross-coupling reactions. Journal of Coordination Chemistry, v. 73, n. 10, p. 1516–1529, 2020.

ZHANG, Y. et al. Jet fuel production from waste plastics via catalytic pyrolysis with activated carbons. Applied Energy, v. 251, n. 05, p. 128-337, 2019.

