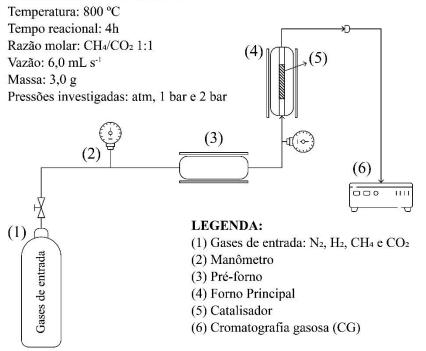

Código: 02-009

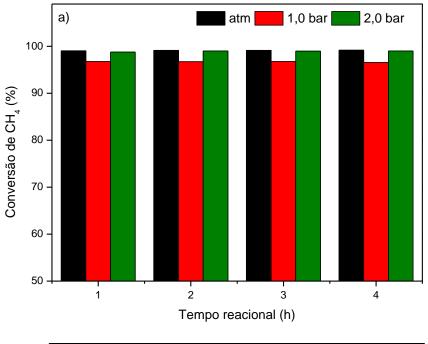
Avaliação do efeito da pressão sobre o desempenho catalítico na reforma a seco do biogás para a produção de syngas.

Guilherme Emanuel de Queiros Souza^{1,2}*, Rodolfo de Andrade Schaffner^{1,2}, Cleuciane Tillvitz do Nascimento^{1,2}, Carla Maria Beraldi Gomes^{1,2}, Lígia Gomes Oliveira^{1,2}, Alessandra Freddo³, Daiana Gotardo Martinez³, Helton José Alves^{1,2} PPGETA - UFPR / *gui.emanuel97@gmail.com

- ² Laboratório de Materiais e Energias Renováveis (LABMATER) UFPR
- ³ Centro Internacional de Energias Renováveis (CIBIOGÁS)


1 – INTRODUÇÃO

2 - MATERIAL E MÉTODOS


Fig. 1 – Ilustração esquemática do processo de RS.

PARÂMETROS REACIONAIS:

3 - RESULTADOS

Fig. 2 – Valores de conversão de a) CH₄ e b) CO₂, variando a pressão no leito reacional.

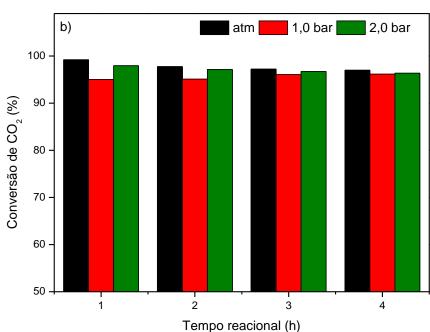
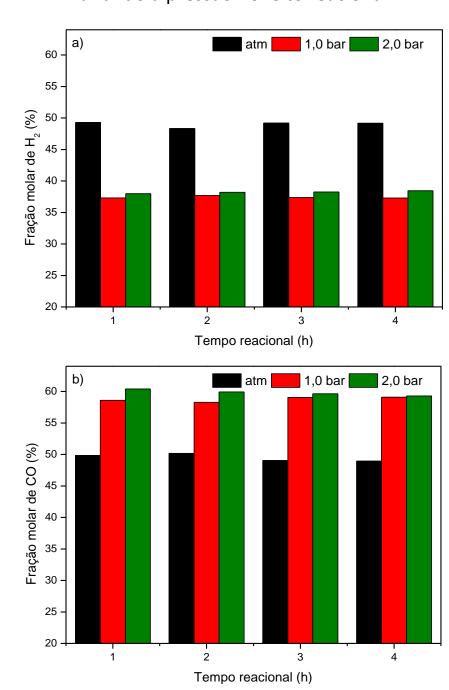



Fig. 3 – Valores de fração molar de a) H₂ e b) CO, variando a pressão no leito reacional.

4 - CONCLUSÕES

O catalisador a base de níquel (Ni-Si-MCM-41) produzido apresentou resultados satisfatórios para a produção de syngas, mesmo quando submetido a diferentes pressões reacionais. Dentre as pressões avaliadas, destaca-se a pressão atmosférica, que apresentou uma razão H₂/CO de 0,98, a qual mais se aproxima da estequiometria desejada (cerca de 1).

5 - REFERÊNCIAS

- 1. S. Bube, Fuel, 366, 2024.
- 2. Q. Liu, Applied Catalysis B: Environmental, 339, 2023.
- **3.** L. Oliveira, International Journal of Hydrogen Energy, 47(84), 2022.

6 - AGRADECIMENTOS

Para mais

